Battery Storage

The benefits of molten salt batteries

As we move towards a future that heavily relies on renewable energy sources and sustainable technologies, energy storage solutions play a crucial role. Molten salt batteries, also known as liquid metal batteries, have emerged as a promising option due to their unique characteristics and advantages. They are a type of rechargeable battery that uses molten salts as the electrolyte. Here are some of their benefits:

Enhanced Safety: Molten salt batteries generally have good safety characteristics. Safety needs to be a paramount concern when it comes to energy storage systems. Molten salt batteries excel in this aspect due to their inherent design. These batteries use metal electrodes and a molten salt electrolyte, which eliminates the risk of thermal runaway or explosions associated with some other battery chemistries. The materials used in molten salt batteries are non-flammable and non-toxic, making them inherently safe and reliable. The fact that molten salt batteries use non-flammable and non-toxic salts, further enhances their safety profile.

Read more

You Must Do your Homework before purchasing energy storage batteries

One of the biggest problems with the efforts to use renewable energy to produce large amounts of the energy consumed on a daily basis has been its inability to reliably supply power at the times it is most needed. This can and will be addressed more commonly in the future with the installation of battery systems that allow households and businesses to store renewable energy for use in peak periods.

This avoids the need to use the power when you are buying it from the grid at a much higher cost.

With an energy storage battery you can utilise the majority of the output of your solar system and minimise these expensive evening electricity rates.

This is definitely a market that is set to thrive in 2023 and following years, however not all batteries are the same.  Most battery suppliers won’t tell you the downside of their batteries and will only tell you the things that are most likely to sell their batteries, so you need to ask questions and compare batteries.

Read more

Advantages of SoNick battery for installations

Below is a summary of some of the differences between the SoNick battery and other battery technologies.

SoNick will not catch fire

The SoNick battery cannot catch fire or explode. It is the only chemistry UL9540A certified for safety from thermal runaway. This means no risk of fire or explosion, even in the presence of external fire.

All lithium-ion batteries have the potential to catch fire. Depending on the particular lithium-ion technology and safety features included with the battery, the ignition point may change, i.e. the ignition point for lithium ion phosphate is higher than that for lithium manganese cobalt.

If a battery installation is situated next to a building and the battery catches fire it is quite possible for the whole building to be burnt as a result of the difficulties associated with extinguishing lithium-ion fires. Also, when lithium batteries catch fire toxic fumes are given off.

SoNick capacity doesn’t degrade over service life

The SoNick battery doesn’t degrade over its service life. After 10 years you should still be operating at your original capacity.

Read more

Using your SoNick battery, energy storage system in winter

During summer, when you have an energy storage system on your house, as long as it is sized correctly and you have enough solar PV, you should always be able to fill your batteries to full capacity on a daily basis. You will probably generate excess electricity and export it to the grid, although you will rarely be paid enough to justify this as a useful use of your green energy production system.

In summer, you can generally just ignore your energy storage system and it will cover as much of your power needs as you have designed the system to provide.

However, in winter the situation changes as the hours of solar generation decrease and the sun is lower in the sky, so often produces less PV generation on your solar panels. This is particularly relevant when you have several days in a row of rainy and / or cloudy weather with little to no PV generation. In order to maximise the solar PV available and get the most use from your batteries it may be a good idea to change the way your battery is utilised.

Instead of only filling your battery from solar which is the cheapest and most environmentally friendly way to fill a household battery you can fill it using off-peak power then using the battery system to provide electricity to your house during peak power usage times, often 3 – 9pm each day. Not as good as charging the battery with the sun but better than paying peak electricity rates.

Read more

Brackenridge – Domestic Case Study using SoNick batteries

This domestic installation was designed to run as a grid minimisation installation. Although the grid remains connected it is rarely used.

This is an area with frequent power outages, often for many days so the ability to have power in an off-grid installation when the grid wasn’t available was a major requirement.

Sodium Nickel Chloride (SoNick) batteries were selected as they have the highest energy density of any batteries and are completely safe with no off-gassing or fire risk, meaning there are no safety issues with installing the batteries. As the SoNick batteries operate with no temperature effects and no degradation from -20°C to +60°C there are no issues with either heat or freezing temperatures that are often experienced and the batteries don’t require air conditioning to keep them cool or heaters to heat them enough for them to work.

Lithium-ion batteries weren’t considered due to the difficulty in recycling lithium batteries at end of life and to their inherent fire risk.

Read more